
A Survey on Software Data Reduction Techniques
for Effective Bug Triage

Ashwini Jadhav1, Komal Jadhav2, Anuja Bhalerao3, Amol Kharade4
1,2,3,4 JSPM's Imperial College of Engineering, Wagholi,

Pune, India

Abstract— Most of the software companies needs to deal with
large number of software bugs every day. Software bugs are
unavoidable and fixing software bugs is an expensive task. The
goal of effective bug triaging software is to assign potentially
experienced developers to new-coming bug reports. To reduce
time and cost of bug triaging, an automatic approach is
proposed in this paper that predicts a developer with relevant
experience to solve or fix the new coming bug report. In this
paper, the five term selection methods on the accuracy of bug
assignment are used. In addition, the load between developers
based on their experience is re-balanced. The proposed system
is built with intention to suggest or recommend the bug and
not to automatically assign it. This allows a window to handle
real time crisis that come up during project development
lifecycle.

Keywords— Mining software repositories, application of data
pre-processing, data management in bug repositories, bug
data reduction, feature selection, instance selection, bug triage.

I. INTRODUCTION

Many software companies spend most of the money in
fixing the bugs. Large software projects have bug
repository that collects all the information related to bugs.
In bug repository, each software bug has a bug report. The
bug report consists of textual information regarding the bug
and updates related to status of bug fixing.

Once a bug report is formed, a human triager assigns this
bug to a developer, who will try to fix this bug. This
developer is recorded in an item assigned-to. The assigned-
to will change to another developer if the previously
assigned developer cannot fix this bug. The process of
assigning a correct developer for fixing the bug is called
bug triage. Bug triage is one of the most time consuming
step in handling of bugs in software projects.

Manual bug triage by a human triager is time consuming
and error-prone since the number of daily bugs is large and
lack of knowledge in developers about all bugs. Because of
all these things, bug triage results in expensive time loss,
high cost and low accuracy.

The information stored in bug reports has two main
challenges. Firstly the large scale data and secondly low
quality of data. Due to large number of daily reported bugs,
the number of bug reports is scaling up in the repository.
Noisy and redundant bugs are degrading the quality of bug
reports.

In this paper an effective bug triage system is proposed
which will reduce the bug data to save the labor cost of
developers. It also aims to build a high quality set of bug
data by removing the redundant and non-informative bug
reports.

II. LITERATURE SURVEY

In [1] they mention that Bug triaging is an error-prone,
tedious and time consuming task. They are going with
Revisiting Bug Triage and Resolution Practices. In this
paper they studied about bug triaging and fixing practices,
including bug reassignments and reopenings, in the context
of the Mozilla Core and Firefox projects, which they
consider to be representative examples of a large-scale open
source software project. Also they have plan to conduct
qualitative and quantitative analysis of the bug assignment
practices. We are interested in providing insights into
several areas: triage practices, review and approval
processes; root cause analysis of bug reassignments and
reopens in open source software projects; and
recommendations for improvements/redesign of bug
tracking systems.

In [2] this paper, they introduce a graph model based on
Markov chains, which captures bug tossing history. This
model has several desirable qualities. First, it reveals
developer networks which can be used to discover team
structures and to find suitable experts for a new task.
Second, it helps to better assign developers to bug reports.
In our experiments with 445,000 bug reports, our model
reduced tossing events, by up to 72%. In addition, the
model increased the prediction accuracy by up to 23
percentage points compared to traditional bug triaging
approaches.

In [3] recent research shows that optimizing
recommendation accuracy problem and proposes a solution
that is essentially an instance of content-based
recommendation (CBR). However, CBR is well-known to
cause over-specialization, recommending only the types of
bugs that each developer has solved before. This problem is
critical in practice, as some experienced developers could
be overloaded, and this would slow the bug fixing process.
In this paper, they take two directions to address this
problem: First, we reformulate the problem as an
optimization problem of both accuracy and cost. Second,
we adopt a content-boosted collaborative filtering (CBCF),
combining an existing CBR with a collaborative filtering
recommender (CF), which enhances the recommendation
quality of either approach alone.

In [4] Current techniques either use information retrieval
and machine learning to find the most similar bugs already
fixed and recommend expert developers, or they analyze
change information stemming from source code to propose
expert bug solvers. Neither technique combines textual
similarity with change set analysis and thereby exploits the
potential of the interlinking between bug reports and change

Ashwini Jadhav et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4611-4612

www.ijcsit.com 4611

sets. In this paper, they present our approach to identify
potential experts by identifying similar bug reports and
analyzing the associated change sets. Studies have shown
that effective bug triaging is done collaboratively in a
meeting, as it requires the coordination of multiple
individuals, the understanding of the project context and the
understanding of the specific work practices. Therefore,
they implemented approach on a multi-touch table to allow
multiple stakeholders to interact simultaneously in the bug
triaging and to foster their collaboration.

III. PROPOSED SYSTEM

Fig.1 System Architecture

The diagram in figure 1 illustrated the system

architecture of the proposed system. The input to the system
is in the form of bug data set. The bug data set consists all
the details of software bugs. Each bug has bug report and
the details of the developer who have worked on that
respective bug. The bug report is mainly divided in two
parts, summary and description. The proposed system gives
predicted results in form of output. Basically, there are two
types of users in the proposed system. First is the developer
and second is the tester. Developer will get software bugs
assigned to him. Developer can work on only one software
bug at a time. Tester can add new bugs to the system.

As shown in figure 1, the proposed system makes use of
bug data reduction. In the proposed system, to save the
labor cost of developers, the data reduction for bug triage is
made. Bug daya reduction is applied in phase of data
preparation of bug triage. Data reduction mainly has two
goals. Firstly, reducing the data scale and secondly,
improving the accuracy of bug triage.

Techniques of instance selection and feature selection are
used for data reduction. Instance selection and feature
selection are widely used techniques in data processing. For
a given data set in a certain application, instance selection is
to obtain a subset of relevant instances (i.e., bug reports in
bug data) while feature selection aims to obtain a subset of

relevant features (i.e., words in bug data). In the proposed
system, the combination of instance selection and feature
selection is used.

The proposed system will be implemented in java
language so it will be platform independent. As there is no
restriction on the size of bug’s information, a tester can add
large number of bugs in the system. This is one of the
biggest advantages of the proposed system. Since all the
bug’s information is open to all the developers, it takes less
time for the developer to take the decision. Developer can
quickly choose the bug to fix.

Since bug triage aims to predict the developers who can
fix the bugs, we follow the existing work to remove unfixed
bug reports, e.g., the new bug reports or will-not-fix bug
reports. Thus, we only choose bug reports, which are fixed
and duplicate (based on the items status of bug reports).
Moreover, in bug repositories, several developers have only
fixed very few bugs. Such inactive developers may not
provide sufficient information for predicting correct
developers. In our work, we remove the developers, who
have fixed less than 10 bugs.

IV. CONCLUSION

Bug triage is an expensive step of software maintenance
in both labor cost and time cost. The proposed system aims
to form reduced and high-quality bug data in software
development and maintenance. Data processing techniques
like instance selection and feature selection are used for
data reduction. The proposed system can be used for any
open source projects that generate huge bug data. Various
software companies working on projects like banking, food
chain management can use the application of the proposed
system.

REFERENCES
[1] Revisiting Bug Triage and Resolution Practices , Olga Baysal, Reid

Holmes, and Michael W. Godfrey David R. Cheriton School of
Computer Science University of Waterloo Waterloo, ON, Canada
{obaysal, rtholmes, migod}@uwaterloo.ca.

[2] Improving Bug Triage with Bug Tossing Graphs Gaeul Jeong ∗
Seoul National University gejeong@ropas.snu.ac.kr.

[3] COSTRIAGE: A Cost-Aware Triage Algorithm for Bug Reporting
Systems Jin-woo Park, Mu-Woong Lee, Jinhan Kim, Seung-won
Hwang, POSTECH, Korea, Republic of,
jwpark85,sigliel,wlsgks08,swhwang}@postech.edu

[4] Collaborative Bug Triaging using Textual Similarities and Change
Set Analysis, Katja Kevic, Sebastian C. Muller, Thomas Fritz, and
Harald C. Gall ¨ Department of Informatics University of Zurich,
Switzerland katja.kevic@uzh.ch {smueller, fritz, gall}@ifi.uzh.ch.

[5] Automatic Bug Triage using Semi-Supervised Text Classification,
Jifeng Xuan1 He Jiang2, 3 Zhilei Ren1 Jun Yan4 Zhongxuan Luo1, 2
1 School of Mathematical Sciences, Dalian University of Technology,
Dalian, 116024 China 2 School of Software, Dalian University of
Technology, Dalian, 116621 China 3 State Key Laboratory of
Computer Science, Institute of Software, Chinese Academy of
Sciences, Beijing, 100190 China 4 Technology Center of Software
Engineering, Institute of Software, Chinese Academy of Sciences,
Beijing, 100190 China 1

.

Ashwini Jadhav et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4611-4612

www.ijcsit.com 4612

